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Abstract 
 

 It is well known that, although psychophysical scaling produces good qualitative 
agreement between experiments using ostensively the same methods but run in different 
laboratories, quantitative agreement is much more difficult to achieve. Constrained 
scaling, in which observers first learn a standard scale and then make magnitude 
judgments of other stimuli using the learned scale, has achieved excellent quantitative 
agreement between individual observers’ psychophysical functions and could 
theoretically do the same for across-laboratory comparisons. We report two experiments 
that were replicated, using constrained scaling, in two different laboratories as examples 
of the level of agreement achievable with this technique. In general, we found across-
laboratory agreement superior to that typically obtained with magnitude estimation. 
 
 
 Several authors have described the difficulties involved in obtaining quantitative 
convergence in psychophysical scaling. Such convergence is important if psychophysics 
is to become as useful as other sciences. Imagine if the charge of the electron had a range 
of values that appeared depending on who was doing the measurement experiment, or if 
the gas constant or the speed of light were not “constant” but depended on which 
investigator was writing about them. Unfortunately, this is the case for exponents of 
psychophysical power functions. Although S.S. Stevens (e.g., 1) argued that canonical 
exponent values should be adopted for all of the sensory continua, it has not been the case 
that the values he suggested could be achieved by every investigator, despite attempts to 
use the same methods and stimuli. A striking demonstration is the paper by Marks (2) in 
which across-observer-average exponents ranging from 0.37 to 0.80 from various 
laboratories are reported for ratio scaling of loudness of pure tones around 1000 Hz. Thus, 
if a theory predicted that the exponent for loudness of a 1000 Hz tone should be 0.60 
based on physiological and physical considerations, that theory would be disconfirmed by 
the a sizable fraction of scaling experiments reported to date, although the average 
exponent is indeed around 0.60. Poulton (3) attempted to classify and model all of the 
various kinds of bias that affect such judgments and presumably give rise to the 
unacceptable level of variability of exponents (and other properties). Others, e.g., Laming 
(4), have suggested that such variation is the source of major interpretational problems 
with direct scaling results. Yet others, e.g., Lockhead (5), have suggested that the attempt 
to achieve canonical psychophysical scales is fundamentally misguided. Still, such scales 
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do have vast usefulness, both in designing buildings, assessing environmental impact, and 
other applied contexts, and also in informing fundamental theories (e.g., 6). Therefore we 
have taken the approach that achieving canonical scales is a worthwhile goal. 
  
 The first step toward that goal was realized by West, Ward & Khosla (7), who 
showed that variation of scaling exponents across individuals could be substantially 
reduced by training observers to use a standard scale and then, while keeping them 
calibrated on that scale, having them judge other stimuli than those used in training 
(constrained scaling). West et al. (7) trained observers to the Stevens’s sone scale for 
loudness of 1000 Hz pure tones, in which sones are a power function of sound pressure 
with an exponent of 0.6 (West et al. used R = 16.6 P 0.60). They then had observers judge 
tones of other frequencies on this same scale, reproducing the usual finding that 
exponents are larger for lower frequencies but doing so for every observer and with 
extremely little between-observer variability in the relation between exponents. West et al 
also had observers judge the brightness of lights on the same scale, in this case 
reproducing Stevens’s standard finding of an exponent near 0.3 for brightness, ½ of the 
exponent for loudness. West et al. speculated that constrained scaling could also be used 
to achieve quantitative reproduction of results across laboratories. In this paper we report 
a first attempt at achieving this goal. 
 
 It is necessary to find a way to characterize the existing level of quantitative 
reproducibility of scaling results. After considering many alternatives, we decided to use 
the two indicators used by West et al. (7): the standard deviation of a set of exponents 
divided by the mean of that set (SD/M, the coefficient of variation), and the ratio of the 
highest to the lowest exponent in the set (High/Low). West et al. were able to reduce these 
indicators, calculated across individuals, from values ranging from 0.19 to 0.45 for SD/M 
and 1.6 to 6.0 for High/Low (from the literature summarized in their Table 1) to 0.045 to 
0.100 for SD/M and 1.2 to 1.4 for High/Low (for experiments where observers were 
trained to the sone scale). To obtain such values for average exponents from groups of 
subjects, we selected 25 average exponents reported by various authors and summarized 
in Table 1 of Marks (2) for magnitude estimations of 1000 Hz tones, and 13 additional 
average exponents from magnitude estimation experiments reported in various papers by 
one of the authors (Ward, including two from West et al.; references supplied on request). 
For these 38 average exponents, the value of SD/M was 0.12/0.54 = 0.22 and that of 
High/Low was 0.80/0.37 = 2.2. We aimed to better these values. 
 
 In order to investigate reproducibility across laboratories, we collaborated in 
replicating two experiments in our two different (University of British Columbia and 
McMaster University) laboratories using the same constrained scaling protocol and 
graphical user interface, but different sound generation, presentation, and calibration 
apparatus. A standard SoundBlaster sound card, a custom artificial ear, and Kenwood 
KPM-510 headphones were used at UBC, and an Aardvark soundcard, a Bruel & Kjaer 
Artificial Ear, and Sennheiser HDA-200 headphones were used at McMaster. In the 
protocol observers first learned the sone scale using 1000 Hz tones (according to R = 16.6 
P 0.60) and then produced judgments of pure tones of several different frequencies, 
including 500 Hz, and 5000 Hz in both experiments, and 65 Hz in addition in the second 
experiment. We also manipulated the number of training, judgment and calibration 
stimuli in an effort to discover the limits of the technique. In the first experiment 



[designated UBC52 (n=10) and McM52 (n=17)], observers made 52 training judgments 
of 1000 Hz tones with feedback, then 52 “calibration” judgments of the same stimuli with 
feedback, for a total of 104 judgments with feedback. They then made 52 judgments of 
500 Hz tones without feedback interleaved with 52 judgments of 1000 Hz tones with 
feedback, followed by 52 judgments of 5000 Hz tones without feedback interleaved with 
52 judgments of 1000 Hz tones with feedback. In each case, the levels of the 52 stimuli 
ranged from 40 dB to 90 dB in 1-dB steps and 1 trial with no stimulus was also included; 
stimuli were presented one time each in a shuffled order in each run. In the second 
experiment [UBC17 (n=15) and McM17 (n=15)], only 17 judgments were made in each 
set, instead of 52, and in addition 17 judgments of 65 Hz tones without feedback were 
made interleaved with 17 judgments of 1000 Hz tones with feedback. The 17 stimuli 
consisted of levels from 40 dB to 88 dB in 3-dB steps, and presented one time each in a 
shuffled order. Responses on the no-stimulus trial (52-trial studies), and any responses of 
“0” were not included in the curve fitting. Power functions were fitted to the individual 
judgments using linear regression on the logarithms of sound pressures and responses. 
Thus, exponents, m, in , where R is the response and P is the sound pressure of 
the stimulus, were estimated from 

maPR =
erroraPmR ++= ˆloglogˆlog . West et al. (7) 

discussed the problem of fitting power functions to such data, including how to estimate 
the effect of statistical regression on the exponent (the latter guided by comments of 
Stanley Rule). This effect can be measured by m’ = m rRP where rRP is the correlation 
coefficient between an observer’s responses and the stimuli to which they were made. 
Thus, exponents estimated from a set of judgments are always smaller than the “true” 
exponent unless rRP = 1, which is never the case. Here, we judged that the regression 
effect would be too large for accurate estimation of the exponent if rRP was less than about 
0.82 (rRP

2 < 0.67). This never occurred for any of the 52-trial 1000-Hz runs but did occur 
for one or more 1000-Hz run for about half of the observers in the 17-trial experiments 
(overall 10/75 and 12/75 runs for UBC17 and McM17 respectively), and at least one of 
500 Hz, 5000 Hz, or 65 Hz judgment sets in 1 of 17 observers in McM52, 2 of 10 in 
UBC52, 5 of 15 in UBC17 and 7 of 15 in McM17. Table 1 is based on all 1000-Hz runs, 
regardless of rRP

2, but we do not include in Table 2 the data of these latter observers. 
 
 Figure 1 displays representative psychophysical functions from the “best” and 
“worst” observers (in terms of rRP

2) from the four experiments for the 1000 Hz runs 
(selected from those made post-training). The functions from UBC52 and McM52 are 
very comparable to those reported by West et al. (7). The worst observers in the UBC17 
and McM17 experiments, however, as mentioned earlier have rRP

2 values lower than our 
nominal criterion of 0.67. Clearly for these observers 17 trials of training is not enough. It 
should be stressed that individual responses are plotted in these functions, in contrast to 
usual psychophysical functions that, even when plotted for individual observers, consists 
of points based on several to many judgments per stimulus. Table 1 summarizes the data 
from the 1000 Hz runs from the four experiments. All of these data are very comparable 
to those of West et al. (7), both the 1000 Hz runs with feedback and also their 1000 Hz 
runs without feedback, which had identical exponents and comparable SD/M and 
High/Low statistics across individuals. Most important, it is easy to see that the exponent 
values themselves are quantitatively very similar across laboratories, as are the SD/M 
values. There is, as might be expected, more variability across individuals in the 17-  



 
Figure 1. Representative psychophysical functions of “best” and “worst” observers for judgments of 

loudness of 1000-Hz pure tones from the four experiments in the two different laboratories. 
 
Table 1. Average across observers of exponents (Mean m) and SD/M values for judgments of the 
loudness of 1000 Hz pure tones during several runs with feedback. WWK=West et al.(7) 

 
Study Training Recal 1 Recal 2 Recal 3 Recal 4 

UBC52      
Mean m 0.55 0.53 0.52 0.49 NA 
SD/M 0.06 0.08 0.06 0.12 NA 
McM52      
Mean m 0.58 0.56 0.55 0.51 NA 
SD/M 0.14 0.08 0.12 0.10 NA 
UBC17      
Mean m 0.57 0.55 0.52 0.51 0.47 
SD/M 0.21 0.18 0.21 0.17 0.21 
McM17      
Mean m 0.56 0.54 0.48 0.48 0.47 
SD/M 0.21 0.19 0.22 0.16 0.19 
WWK      
Mean m 0.59 0.54 0.54 0.55 0.56 
SD/M 0.03 0.04 0.07 0.07 0.07 

 
stimulus experiments: the SD/M values are about the same as the best of the standard 
magnitude estimation experiments surveyed by West et al. Clearly there is a cost of 
estimating power function exponents from psychophysical functions with so few trials. 



West et al. had observers perform 1000 judgments in total in their first experiment, of 
which 800 were at 1000 Hz (600 with feedback), and 200 at 65 Hz. In contrast, in UBC17 
and MCM17, observers performed only a total of 85 judgments of 1000 Hz tones with 
feedback. Thus, their total experience was not even as great as the first training run in 
West et al.’s Experiment 1. We can summarize by comparing the SD/M and High/Low 
statistics for these replications using constrained scaling with those for conventional 
magnitude estimation mentioned earlier. Over the 22 average constrained scaling 
exponents displayed in Table 1, SD/M = 0.035/0.53 = 0.07, and High/Low = 0.59/0.47 = 
1.6, clearly an improvement over the conventional technique (0.22 and 2.2 respectively).  
 
 A more stringent test, perhaps, is the reproducibility of the judgments of off-
training stimuli across laboratories. Table 2 presents the data for judgments of 500 Hz, 
5000 Hz and 65 Hz pure tones. Here we see a similar but slightly more complicated 
picture. First, we find excellent agreement across laboratories in the exponents for 500 Hz 
and 5000 Hz, although the SD/M across observers is somewhat larger than for the 1000 
Hz tones. Over the 4 replications of each set of judgments, the SD/M and High/Low 
statistics are respectively 0.017/0.52 = 0.03 and 0.54/0.50 = 1.1 for 500 Hz, and 
0.051/0.52 = 0.10 and 0.57/0.46 = 1.2 for 5000 Hz. Although probably somewhat 
underestimated because of the small set of values available, these numbers represent 
excellent reproducibility across laboratories, comparable to that achieved across 
individuals by West et al. (7). The results for the 65 Hz judgments, however, are less 
encouraging. Although not reliably different from each other (t = 0.66), the average 
exponent values displayed in Table 2 are significantly larger than those reported by West 
et al. in their two main experiments, viz. 0.70 and 0.67. Nonetheless, all of the 
experiments replicate the usual finding that exponents for 65 Hz are significantly larger 
than those for 1000 Hz. The reason for the quantitative disagreement is not clear; it may 
arise from the fact that observers in UBC17 and McM17 had trouble judging these stimuli 
at all. The SD/M values of 0.25 and 0.30 in those experiments are the highest ever seen 
using constrained scaling, and this is after excluding nearly half of the observers from the 
 
Table 2. Average across observers of exponents (Mean m) and SD/M values for judgments of the 
loudness of 500 Hz, 5000 Hz, and 65 Hz pure tones without feedback.  
 
Study 500 Hz 5000 Hz 65 Hz 
UBC52    
Mean m 0.51 0.56 NA 
SD/M 0.12 0.12 NA 
McM52    
Mean m 0.54 0.57 NA 
SD/M 0.12 0.20 NA 
UBC17    
Mean m 0.52 0.51 1.02 
SD/M 0.13 0.27 0.25 
McM17    
Mean m 0.50 0.46 0.93 
SD/M 0.16 0.16 0.30 
 



average because at least one rRP
2 value was less than 0.67. Perhaps the small number of 

judgment trials, and the concomitant lack of practice judging these hard to hear stimuli 
(thresholds typically 40 dB or higher; several observers couldn’t hear many of the lower-
level stimuli), reduced the efficacy of the technique. Indeed two of the UBC17 observers 
had non-monotonic psychophysical functions, indicating that they were simply guessing 
the appropriate response. These observers may have had an undiagnosed low-frequency 
hearing loss. The fact that the calibration judgments of 1000 Hz stimuli interleaved with 
the 65 Hz judgments for these observers remained normal indicates that the problem was 
only with the 65 Hz stimuli. As mentioned earlier, West et al.’s observers performed 200 
judgments of the 65 Hz stimuli; perhaps more practice with these stimuli in our 
experiments would have led to a closer replication. Nevertheless, this failure to reproduce 
the 65 Hz exponents across laboratories needs to be investigated further, and indicates 
that the minimal implementation of constrained scaling might not be good enough for 
scientific purposes in some cases. 
 

Overall these constrained scaling experiments and those of West et al. (7), 
despite differences in lab equipment, observers, and numbers of training and test trials, 
demonstrate across-laboratory reproduction of quantitative results substantially superior 
to that obtainable with conventional techniques. Other modifications of conventional 
direct scaling techniques also could yield superior reproducibility, e.g., the CR-100 scale 
of Borg & Borg (8) and the master scaling technique of Berglund (9). One or more of 
these techniques should be adopted by convention in order to create reproducible 
canonical scales of sensory and other stimuli. Moreover, the UBC17 and MCM17 
experiments demonstrate that accuracy comparable with the best of conventional 
techniques, often requiring hundreds of judgments per condition, can be obtained in 
constrained scaling with only 17 training judgments and 17 + 17 judgments (17 
calibration and 17 test) per test condition. This means that this technique will be useful in 
the clinic, where we are already using it to measure tinnitus magnitude. 
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