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INTRODUCTION  
 

The individual organisms of most animal species occupy variable environments 
whose detailed features cannot be fully anticipated by a genetic code. The 
evolutionary response to this ecological constraint has been to build into that code 
mechanisms for abstracting the structure of individual environments and for 
generating behavior based on the representations thus formed. To adequately 
represent an environment, an organism must encode the physical features of its world, 
relations among those features and events that occur in that world including its own 
actions and their consequences, and the temporal flow of this information in time. 
Memory and perception can be considered to operate in the service of the 
representational problem, which is an associative one in the sense that these aspects 
of spatiotemporal information must be extracted and encoded if an ecological niche is 
to be adequately described.  

The problem of how the brain carries out its associative and representational 
functions was addressed by early researchers in experimental psychology and neuro- 
science (Lashley, 1950; Hebb, 1949; Konorski, 1967; Deutsch, 1960). The accounts 
they suggested were structural in the sense that specific neural mechanisms were 
proposed, although computational modelling of those mechanisms was not attempted. 
In the two or three decades following these efforts, the study of learning shifted away 
from structural theories to laboratory investigations of Pavlovian and instrumental 
conditioning (Mackintosh, 1983) and to the development of quantitative theories of 
the acquisition process (Pearce & Hall, 1980; Rescorla & Wagner, 1972). Although 
this research has deeply enriched our understanding of associative mechanisms, it has 
also set into relief some problems regarding the nature of representations (Colwill, 
1993; Miller & Barnet, 1993) and the organization  
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of action (Holland & Rescorla, 1982) that might be better solved within the 
framework of a structural approach (Brener, 1986). Interest in structurally-based 
accounts of learning has recently resurfaced, not only because the contribution of 
laboratory analyses of learning may be saturating, but also because developments in 
neuroscience and in neural network modelling have opened avenues of description 
and inquiry that were not available to early pioneers.  

Recent structural models have typically taken as their starting point the task of 
capturing specific conditioned responses (e.g., Gluck et al., 1993) or selected phe- 
nomena of signalling such as blocking, overshadowing, and the learning of non- 
linear associative relations (e.g., Schmajuk & DiCarlo, 1992; Gluck & Meyers, 
1993). The model described in this paper, on the other hand, attempts to give a more 
general account of an organism's adjustment to a learning situation. We begin by 
describing some background facts that invited the current approach. These facts 
concern the nature of Pavlovian and instrumental conditioning and how mechanisms 
that support these types of learning might be reflected in the organization of the brain. 
A neural network architecture is then described that performs learning functions by 
means of two processes, (a) a filtering process that identifies unexpected information 
arising over sensory pathways, and (b) a tuning process that selectively augments 
neural processing in sensory modalities that are conveying surprising information to 
the cortex. In the concluding sections we discuss implications of the model for 
simulation and experimental studies, and comment on how learning functions may be 
reflected in the electrical and magnetic field activity of the brain.  
 
BACKGROUND  
 
Any model of a learning system should try to capture basic findings from behavioral 
research which indicate how learning works. In this respect, the idea that organisms 
come to know or represent the spatiotemporal stucture of their worlds was long 
resisted by behavior theory, in favor of the idea that linkages between responses and 
controlling stimuli were sufficient to account for learned behavioral adaptation (see 
Mackintosh, 1983, for a review). However, there is now much evidence that 
environmental relations are encoded by animal (Rescorla, 1987, 1988) and human 
subjects (Dawson & Schell, 1987) during conditioning experiences. For example, in 
human subjects differentiation of behavior between signalling stimuli does not occur 
in the absence of the ability of the subjects to describe the Pavlovian or instrumental 
contingencies to which they have been exposed (Dawson & Bifemo, 1973; Hughes & 
Roberts, 1985). When verbal reports of reinforcement contingencies are dissociated 
from response differentiation in either conditioning arrangement (this occurring in 
15% of subjects in the feedback experiments of Hughes & Roberts, 1985), it appears 
to be invariably the case that knowledge of the contingencies precedes the 
differentiation of overt behavior. Overall, the linkage between abstracting of 
environmental relations and adapting behavior to those relations is very close 
(Roberts, 1990).  

Also important for structural theories of learning are numerous similiarities which 
exist between Pavlovian and instrumental conditioning at the associative level. These 
similarities pertain not only to the close linkage between associative  
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knowledge and response differentiation just mentioned, but also to basic principles of 
signalling in the two conditioning arrangements. For example, if multiple stimuli 
predict a reinforcer, subjects learn preferentially about the best predictor, in 
accordance with a principle of relative validity (Mackintosh, 1983; Wagner et al., 
1968). Similarly, if reinforcement is allocated differentially among several alternative 
responses, the response that is scheduled to receive the highest rate of reinforcement 
is strengthened the most by the training arrangement (Herrnstein, 1970). Stimuli and 
responses also appear to be equivalent in their ability to signal a reinforcer. For 
example, bar pressing for food reward is impaired if responding produces an 
exteroceptive stimulus that is equally valid as a signal for reinforcement (Williams & 
Heyneman, 1982). These and other associative similarities summarized by 
Mackintosh (1983) are important, because they imply that the same associative 
mechanism is responsible for encoding of Pavlovian and instrumental contingencies 
(Weisman, 1977). The existence of a single associative mechanism, on the other 
hand, gives reason to try to describe and model this mechanism. In the model that we 
describe here, Pavlovian and instrumental contingencies are assumed to differ only 
with regard to whether stimuli that signal reward are conveyed principally by an 
exteroceptor (the Pavlovian case) or by kinesthetic pathways (the instrumental one).1 

One might expect that the requirements of an encoding system that extracts 
relations among different types of events would be reflected in the general 
organization of the brain. In this respect it may be noteworthy that there is significant 
uniformity in the morphology and organization of cortical structures in the brain. It 
appears from histological evidence that up to 90% of the synapses in the cortex are 
excitatory or Type I synapses, and as many as 85% of these synapses may be 
provided by a single category of cell, the pyramidal neuron (Braitenberg & Schuz, 
1991). There is less agreement about the uniformity of inhibitory neurons (Type II), 
some authors proposing half a dozen types while others only one basic type, in any 
case not too many (Douglas & Martin, 1990). Organization of these neuronal 
processing elements into laminae and columns is characteristic of most cortical 
regions, even though variations exist between regions that serve different functional 
roles. The capacity for plastic changes in the form of long term potentiation (LTP) 
has been documented at several levels of the brain including neocortical and 
paleocortical structures, magnocellular and intralaminar thalamic nuclei, basal 
forebrain regions, and peripheral ganglia (Gerren & Weinberger, 1983; Lynch & 
Granger, 1992; Racine et al., 1983). These findings suggest that learning depends not 
only on specialized neurons and local architectures that are adapted for specific 
purposes, but also on the way in which neurons are organized into cortical regions, 
and in the kind of information that is delivered to these regions over time.  
 
 

1Although differences in the modality of the signalling stimulus do not appear to alter how association 
works. the properties of behavioral adaptations brought out by signalling (for example, whether the 
response is executed by striate or smooth muscles, the voluntary nature of the act, and its access to 
consciousness) are affected by modality differences (Roberts, 1990). How behavior is generated from 
environmental representations that are established by conditioning is a problem for modern behavior 
theory (Rescorla. 1988). The learning model described in this paper does not address this problem in a 
detailed way, but the hierarchically organized and distributed nature of encoding in the system is 
compatible with the form of analysis advanced by Brener (1986).  
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The model that we describe explores how these 'macroarchitectural' features of brain 
organization might support a learning system.  

We have also been guided by some facts relating to brain electrical activity 
during performance on cognitive and perceptual tasks. Slow potentials of the brain 
shift toward negativity prior to the performance of motor responses (Gaillard, 1986) 
as well as prior to the delivery of informational stimuli when motor responding is 
absent (Chwilla & Brunia, 1991). P300-like waves are augmented by stimulus 
novelty (Johnson, 1986), and although dynamic changes in these waves have seldom 
been studied over extended periods, their dependence on novelty suggests they ought 
to subside as the eliciting event becomes predicted. Recent evidence suggests that 
P300 waves are generated by inhibitory mechanisms that are either widely distributed 
in cortical and subcortical structures (Halgren et al., 1986; Woodward et al., 1992) or 
are organized in a such way that their effects can be selectively manifested in these 
structures (Roberts et al., 1994; Rockstroh et al., 1992). The intrinsic repetitive firing 
behavior of many neurons is also relevant to biological and computational models of 
learning (Basar & Bullock, 1992). Coherent oscillatory activity has been recorded 
from ensembles of neurons in several brain structures and shows properties such as 
sensitivity to apparent motion (Singer et al., 1990) and deployment of attention 
(Murthy & Fetz, 1992) that are consistent with a role in perception and/or encoding. 
Slow waves, P300 events, and oscillatory rhythms are of interest to our agenda, not 
only because any model of learning must account for them, but also because these 
phenomena seem likely to express the dynamics of a learning system that is 
embodied in the general organization of the brain.  

A more specific point of departure for our attempt to describe a learning system 
came from behavioral experiments which suggested that sensory pathways are selec- 
tively modulated or 'tuned' by conditioning arrangements. Roberts et al. (1991) 
monitored the target of visual fixation while human subjects learned to produce two 
patterns of action that were identified by auditory feedback signals alone. The pur- 
pose of the experiment was to determine whether the previously documented ability 
of subjects to accurately describe behavioral outcomes of training (Hughes & 
Roberts, 1985) might depend in part on whether their actions were self-monitored in 
vision. Contrary to expectation, the results showed that subjects typically did not 
watch what they were doing during feedback training, even though provision of 
feedback in the form of auditory signals meant that they were free do so. On the 
contrary, subjects tended to close their eyes on feedback trials as training progressed 
(see Figure 1A). Bramwell (1993) recently corroborated this observation in a 
different training arrangement (Figure 1B) and went on to show that if a visual 
detection task was superimposed on the auditory feedback problem so that vision was 
now required, spontaneous blinks and detection errors were increased compared to a 
condition in which the visual task was performed alone. These findings suggested 
that eye closures may have occurred during the auditory feedback problems of Figure 
1, because processing in visual channels was relaxed or 'tuned out' by the presence of 
auditory feedback signals that also required processing. The progressive nature of the 
eye closure effect also suggested that repeated conjunctions between events in 
kinesthetic and auditory but not visual pathways may have favored the development 
of eye closures in this training environment.  
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Figure 1. (A) Subjects received either auditory feedback (AUD/LT or visual feedback (VIS/LT) for 
generating two bidirectionally opposite patterns of unidentified behavior. Eye closures were observed 
during auditory feedback as training progressed. By the end of training, eye closures occupied 
approximately 65% of each auditory feedback trial relative to baseline (Roberts et al., 1991). The two 
behavior patterns that were trained consisted of striate muscular activities associated with increases and 
decreases in cardiac interbeat intervals. (B) Subjects solved an auditory feedback problem on single 
task trials and a visual detection task concurrently on dual task trials, in two training sessions separated 
by a brief rest interval. The onset of each trial was accompanied by a 'beep' issued from a computer. 
Measurement of eye closures showed that the subject's eyes were open on dual task trials and on blank 
trials which occurred during intertrial intervals. However, eye closures occurred and intensified over the 
course of training on single task trials where auditory feedback was processed (Bramwell, 1993).  
 
 

Although tuning expressed as perceptual interference has not been widely stud- 
ied in conditioning experiments, the fact that discriminative behavior often results 
from subjects learning to orient toward and approach objects or locations that are 
associated with reward, to the detriment of objects or locations that are not, suggests 
that the role of tuning in behavioral adaptation may be considerable (Jenkins & 
Sainsbury, 1970). Signalling principles such as blocking and overshadowing also ap- 
pear to be amenable to analysis in terms of tuning (Mackintosh, 1983), and examples 
of lateral and surround inhibition which could support such phenomena are well 
documented in the nervous system (Kandel et al., 1991). We therefore began our 
project by attempting to describe an architecture that might tune sensory systems  
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during associative learning. Because the role of tuning is presumably to promote the 
formation of associations among the events that are processed, it was desirable to 
consider a mechanism for association as well. How might these functions be served, 
how much work can they do, and where are they situated in the brain?  

 
TUNING AND FILTERING  
 

If tuning among sensory modalities is to occur, information about activity in dif- 
ferent modalities must converge in the nervous system. Thalamic nuclei offer an early 
opportunity for intermodal sensory processing and seem likely on this account to play 
a role in tuning functions. On the other hand, the extensive reciprocal connections 
which exist between thalamic nuclei and neocortical and paleocortical regions imply 
other levels of organization to and from which information is delivered, and are 
consistent with a principle of distributed associations (Lashley, 1950). These 
principles are not controversial, and we began by describing a learning system that 
included them.  

Figure 2 describes the elements of the system in abstract terms, without explicit 
reference to neuronal mechanisms (Roberts et al., 1992). Pathways A-F represent 
sensory modalities that impinge on a tuning mechanism; in each modality there is 
also a cortical filter that processes sensory input. Briefly, we want tuning to work as 
follows. If an unexpected event occurs in one modality (A), processing in that 
modality is facilitated while processing in other modalities is dampened 
simultaneously (CDEF). However, if a biologically significant event has co-occurred 
in a second modality (B) because the two events are linked by an environmental 
contingency, that modality is spared from inhibition and is facilitated instead. 
Synaptic activity is therefore enhanced in neural networks that are driven by 
unpredicted and temporally coupled task events, and dampened elsewhere (receptor 
orienting acts may be part of this process). The purpose of tuning is to enhance the 
rate at which uncoded data enters the system, and to amplify the effect of these data  
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on synaptic plasticity. As a consequence of data-driven processing, links are forged 
between events at distributed levels of the system.  

Associative functions are performed by the cortical filters which are shown in 
each modality in Figure 2. Although only two links are illustrated (the arrows con- 
necting filters in modalities A and B), the pattern of connectivity among filters in 
different modalities is assumed to be complete. The cortical filters serve two 
functions. First, they gate sensory input to the tuning mechanism. Only unexpected 
events gain access. Second, the cortical filters are a major site of learned association. 
They receive input from many modalities, and they change their filtering 
characteristics as synaptic weights are modified by Hebbian rules. A further 
assumption of the model is that once two sensory events have become associated by 
filtering, those events lose their access to the tuning mechanism. In other words, 
association acts as a filter. We need the filtering function to capture phenomena such 
as automaticity, activational peaking over the course of training (Germana, 1968), 
and an expected diminution of P300 waves with experience (Johnson, 1986). At least 
one current model of Pavlovian conditioning (the SOP model of Wagner & Brandon, 
1989) makes a similar assumption, although that assumption is couched in quite 
different terminology.  

Before leaving Figure 2, we should comment on the concept of a modality 
(pathways A-F). This term is usually taken to refer to a sensory system such as 
vision, audition, kinesthesis (which signals reward in the instrumental case), and so 
on. But sensory systems are more finely differentiated than this term allows. For 
example, the visual system conveys different types of information over distinct 
pathways (the magnocellular and parvocellular, at the level of the lateral geniculate). 
Auditory cortex is tonotopically organized, and there is extensive columnar 
organization in visual and kinesthetic pathways. Although it is reasonable to suggest 
that tuning effects may extend to multiple levels including an entire sensory system 
(Figure 1), we prefer to link the sensory channels of our model with more detailed 
structural elements such as cortical columns. A tuning mechanism whose bandwidth 
is wide is likely to play a more important role in association than one whose 
bandwidth is narrow.  

Figure 2 identifies two elements, tuning and filtering, that may be involved in 
learning, and although thalamic and cortical mechanisms are implicated in these 
functions, there are no neurons here. The next question was, how might these 
mechanisms work neuronally, and in real time?  
 
NEURAL NETWORK IMPLEMENTATION  
 

Given technological constraints, any modelling effort can only incorporate a 
small sample of the findings from neuroscience research. Although it is not an easy 
task to determine which findings should be included in a model, it is a task worth 
attempting because application of this information can have major effects on the 
functioning of a neural network (Lynch & Granger, 1992). In implementing the 
model of Figure 2 we have tried to accommodate some documented properties of real 
neural networks. Among these properties are (a) selected aspects of corticothalamic 
organization including reciprocal connectivity and a substantial bandwidth in the 
forward and backward paths; (b) an increase in the number units  
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available for encoding at higher levels of the system (this feature enabling sparse 
encoding); (c) a provision for top-down processing of sensory input (Peterhans & von der 
Heydt, 1989); and (d) modulatory mechanisms that appear to alter synaptic gain via basal 
forebrain and/or intralaminar thalamic pathways (Hasselmo & Bower, 1992). Our model 
is still in the developmental stage, with only pieces of it having been tested. In the 
following we describe the basic implementation and comment on how we are pursuing it.  

An overview of the architecture is given in Figure 3 where three sensory channels (A, 
B, and C) are shown. Although each channel can be thought of as a cortical column, the 
nature of processing in the system is such that whole sensory modalities could be gated 
up or down by the tuning system. Thalamic relays convey activation to two central 
elements in each channel, a readout system and a comparator, both situated in the cortical 
column. It is important to note that the state of the readout system is determined by its 
thalamocortical input acting in concert with previous and concurrent activations, within 
and between sensory channels. The readout system integrates the information it receives 
and conveys a portion of its output as an inhibitory pattern to the next element in the 
system, the comparator.  
 
 
 
 

 
Figure 3. Overall organization of the model. Three channels or modalities are shown (A, B, C). In each 
modality thalamic relay neurons convey current input patterns to a readout system and a comparator 
situated in the cortex (both inputs are excitatory). The current state of the readout system depends on 
previous activations both with and between channels (cortical columns). The readout system sends part 
of its output as an inhibitory pattern to the comparator. The comparator compares the actual input with 
the expected input and generates a signal proportional to the mismatch. This signal is conveyed back 
down to the thalamus where it 1) activates an inhibition of channels which did not experience much of a 
mismatch or in which activation levels are currently quite low, and 2) drives a thalamic facilitator 
which increases the gains in the readout system proportional to the mismatch found in that system. 
These events are permissive for associations to form between channels.  
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Figure 4. The readout level. The three layers represent three different cortical columns (modalities). The 
connectivity in this particular implementation is exhaustive and recurrent. This is where learning takes 
place when there is a mismatch of patterns arriving at the level of the comparator.  
 
 
 

Figure 5. Removing the connections between modalities at the readout level, we can see the connec- 
tions from the readout layers to the comparator. These connections are inhibitory, while connections 
ascending to the comparator from thalamic sensory nuclei are excitatory. When the actual pattern 
matches the expected pattern, there is no output from the comparator, but if a mismatch occurs, an 
output is generated proportionally which returns to the thalamic level as shown in Figure 3. The smaller 
number of cells at the thalamic layer is meant to depict increased capacity at the cortical level. 
Thalamic relays are also fully connected to the readout layer, but to simplify the figure this is illustrated 
only in the lower module.  
 
 
 

It is the comparator acting in conjunction with the readout system that serves the 
filtering function. Specifically, the pattern of inhibition impinging on the com- 
parator from the readout system constitutes a prediction of the state of excitation that 
is expected to be conveyed by thalamic relays at the next instant in time. If af- 
ferentation rising from thalamic relay neurons matches the readout pattern, the two 
patterns nullify one another and the comparator is silent. Psychologically this corre- 
sponds to the state of affairs in which there are no surprises in the environment, and  
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the moment by moment context that the organism finds itself in predicts, with con- 
siderable reliability, the events that follow. It is important that the readout system 
receive and integrate information from many cortical regions including not only in- 
trinsic pathways arising from structures such as the hippocampus, but also from the 
exteroceptors and kinesthetic pathways. This is necessary if thalamic afferentation is 
to be predicted accurately as the organism moves through time and space.  

Now, if the organism occupies a stable context which it has experienced exten- 
sively, the readout system should produce accurate predictions of the course of tha- 
lamic activity, and the comparator will remain silent. However, if a novel event 
occurs (such as the appearance of CS or US in a just-imposed conditioning 
arrangement, or an unpredicted stimulus in a cognitive task), inhibition conveyed to 
the comparator by the readout system will not cancel the excitation arriving from 
thalamic relay neurons. In this case, there is a mismatch, and the resulting output 
from the comparator is conveyed back down to the thalamus where it drives the 
tuning system. In the model of Figure 3, this is the primary role of the 
backprojections from the cortex to the thalamus. Because the forward and backward 
connections between thalamus and cortex are functionally linked by the model, the 
density of these projections should be comparable in the two pathways, to the extent 
that tuning is the principal function served.  

In the present implementation, there are two components in the tuning system 
which is driven by backprojected signals. A portion of the backprojected signal 
serves to activate a “thalamic inhibitor” which triggers a brief lateral inhibition of 
channels that did not experience much of a mismatch, or that are not currently being 
driven by input to their thalamic relay neurons. We see this effect as highly specific 
and lasting on the order of a few hundred milliseconds, which is a time course that is 
consistent with evidence regarding the inhibitory effect of task stimuli on the firing of 
cortical neurons (Bechtereva et al., 1992) and the duration of cellular afterhyper- 
polarizations that might conceivably mediate a brief inhibition (McCormick, 1990).  

The second component of the tuning system is a “thalamic facilitator” which 
serves to increase synaptic gain in the readout systems within which the mismatch 
patterns emerged. The thalamic facilitator may do so in two ways, (a) by depolarizing 
the apical dendrites of superficial pyramidal cells through intralaminar or modality-
specific magnocellular structures, thus decreasing the threshold for activation of 
NMDA receptors; and (b) by gating down synaptic weights in association relative to 
afferent pathways through basal forebrain structures which appear to have this effect 
in at least some cortical regions (Hasselmo & Bower, 1992). The time constant of 
thalamic facilitation is thought to be longer than that of thalamic inhibition, perhaps 
lasting on the order of seconds, and the effect of facilitation is thought to be less 
specific, extending to nearby columns or an entire sensory modality. A combination 
of these two tuning events (lateral inhibition and thalamic facilitation) favors the 
formation of associations between temporally related patterns that are generated 
within the various activated channels, while affording protection of synaptic weights 
in channels whose current input is properly coded.2  
 
2 Encoding is selectively favored because (a) NMDA receptors mediating unexpected events in afferent 
pathways are facilitated, and (b) lateral inhibition ensures that only thalamic relay neurons that are 
driven reliably by their receptors discharge into the cortex during the period of inhibition. One encoding 
advantage conferred by inhibition lasting a few hundred milliseconds is that novel  
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In real biological systems, associations are formed at different levels. For example, 
LTP occurs in cortical synapses as well as in synapses found in the hippocampus, 
cerebellum, and magnocellular thalamic nuclei (Gerren & Weinberger, 1983; Lynch 
& Granger, 1992; Racine et al., 1983). It is therefore of interest to our agenda to 
explore the effect of adding plasticity at different levels. However, for the present we 
are restricting our attention to associations formed within the readout layer which 
forms the principal associative system. The architecture of this system is shown in 
greater detail in Figure 4. The three readout registers represent three different 
channels or cortical columns. In our initial implementation connectivity is complete 
and recurrent (the recurrent connections coding temporal information). This is where 
associative learning takes place when there is a mismatch from expected patterns at 
the level of the comparator.  

In subsequent implementations we plan to explore the effect of adding recur- 
rently connected hidden units to store all or some of the information regarding how 
spatiotemporal context changes over time. This might make it easier to uncouple 
patterns representing past versus current information.  

Figure 5 shows relationships between the thalamic relay, readout, and compara- 
tor systems in more detail. As described above, connections from the readout system 
to the comparator are inhibitory, and those from thalamic relay neurons to the 
comparator are excitatory. In our current implementation, dual innervation of the 
comparator is enforced by the provision that synaptic weights must be either positive 
or negative and not change from one to the other. Eventually, we may include a bank 
of “interneurons” with empirically derived properties, and driven by excitatory 
afferents, to accomplish inhibition at the level of the comparator. One way to ensure 
the proper operation of the comparator is to employ anti-Hebbian learning on the 
connections between the readout and comparator levels, to force a match between 
learned and current patterns as new patterns are experienced. In contrast to the highly 
specific role of the comparator, the readout system plays a more general role of 
pattern storage by encoding associations between current and past inputs within and 
between modalities. An important feature of the arrangement shown in Figure 5 is 
that a smaller number of cells at the thalamic layer innervates a larger number of cells 
at the readout level. This means that there is an increase in capacity at the cortical 
level, an arrangement that favors sparse encoding and orthogonalization of input 
patterns (McNaughten & Nadel, 1990). Currently the readout system is modelled as a 
Hebbian pattern associator network. We are also exploring a form of competitive 
learning within the readout systems in order to enhance orthogonalization of stimuli 
and storage capacity in the encoding system.  
 
 
events that follow unexpected stimuli within a brief time interval are likely to have been caused by 
those stimuli. Another advantage is that thalamic afferentation that arises from sources that are properly 
coded is less likely to be affected than would be the case were inhibition to be long lasting. It should be 
noted that because thalamic afferents feed into the readout or associative layer as well as the 
comparator (Figure 3, a property consistent with known columnar architectures), predicted events will 
continue to drive cortical processing even though alteration of synaptic weights is not supported by the 
tuning mechanism. It should also be noted that events which are not unexpected may still have some 
predictive value for new events. These events may enter into new associations but will do so more 
slowly because of the relative gating down of their channels.  
 
 

425  



PROBLEMS FOR SIMULATION AND EXPERIMENT  
 

One reason for attempting to model a general learning system is that such a sys- 
tem almost certainly exists in the brain (Mackintosh, 1983; Weisman, 1973). An 
obvious risk, however, is that in attempting to do so one ends up modelling not just a 
learning system but brain function as a whole, which while ultimately desirable 
(Grossberg, 1987; Konorski, 1967) is probably not a realistic goal. One way that one 
might keep the task manageable is to approach the problem in steps, working on as- 
pects that seem important and tractable. A stepwise approach may also make it easier 
to stay close to experimental findings and to frame experimental questions whose 
pursuit can change one’s thinking about aspects of the model. In the preceding 
section we have already mentioned some of the variables we are exploring. Next, we 
comment on some additional questions pertaining to computer simulation and on 
some experimental findings that bear on the model.  

Simulation Studies  

There are a number of performance features, both general and specific, that we 
seek from this model, if it is to be a realistic model of associative encoding in the 
brain. For example, in general terms the model must obviously include a means by 
which very similar patterns can be separated (when appropriate) and dissimilar 
patterns can be grouped. As mentioned above, sparse encoding at neocortical levels is 
expected to assist orthogonalizing and grouping of stimulus inputs, particularly if a 
competitive learning rule is introduced at this level of the system. A further feature of 
the model is that the plasticity itself should be somewhat adaptable. By this we mean 
that the system should learn under several quite different situations: i) When there is a 
large departure from the expected pattern, ii) when there is a reliable departure from 
the expected pattern, even if the departure is not large; and iii) when there is an 
accompanying biologically significant event. The rate of learning should be 
proportional to these parameters.  

Most of the physiological evidence presently available regarding mechanisms of 
synaptic plasticity in cortex has been gathered in allocortical and paleocortical struc- 
tures (for example, the hippocampus) and points to simple forms of Hebbian learning 
in these structures (Brown et al., 1990). However, there is reason to suggest that more 
complicated forms of Hebbian learning may be needed to describe plasticity in the 
neocortex. Singer and his colleagues have recently reported that connection weights 
can show decrements as well as increments when both pre- and postsynaptic elements 
are active at a synaptic junction (Artola et al., 1990). The direction of change depends 
on separate thresholds for these effects, such that the postsynaptic unit must be 
activated beyond one threshold if a decrement in conductivity is to occur. There is, 
however, a second, higher, threshold. When this second threshold is reached, an 
increment in connection weights is observed. Increases in postsynaptic activation 
beyond this level increase the amount of the increment up to some asymptotic level. 
Although Singer and his colleagues found these effects in slices of visual cortex 
suspended in vitro (Artola et al., 1990), Racine and his coworkers have obtained 
evidence that this rule may apply in chronic preparations as well. Racine et al. (1994, 
I, II) found that coactivation of cholinergic systems with pilocarpine during LTP 
produced a long term depression of cortical  
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synapses. However, subsequent research which substituted externally applied DC 
currents for coactivation of cholinergic inputs enabled a long term potentiation of 
cortical neurons, perhaps because DC polarization of cortical neurons induced higher 
levels of postsynaptic activation than did coactivation of cholingeric systems.  

In view of these findings in real biological systems, it is of interest to explore in a 
model that emphasizes cortical processing (as ours does) the effect of introducing a 
bidirectional encoding mechanism of the type reported by Artola et al. (1990). A 
similar algorithm was described earlier by Bienenstock, Cooper and Munro (1982) 
and is often called the BCM Rule. Such a rule offers several potential benefits. For 
example, simulations carried out by Hancock et al. (1991) suggest that it can facilitate 
orthogonalization of input patterns. Another possible function relates to how spurious 
correlations that may arise from the environment are dealt with by cortical 
processing. In the absence of modulatory inputs to push the postsynaptic activation 
beyond the second threshold, synapses that are driven by spurious correlations may 
be decremented and the effects of these correlations thus minimized.  

Another question that we have considered is whether back propagation algo- 
rithms should be introduced as an alternative to Hebbian learning in the system. 
Although Hebbian rules are efficient in two-layer networks, back propagation is a 
powerful algorithm that can train hidden units in multi-layer architectures, which 
gives it an advantage in representing complex and nonlinear inputs to a system. 
However, one can question whether back propagation gives an accurate account of 
what real neural networks actually do (Zipser & Rumelhart, 1989). A feature 
common to back propagation models and the tuning model described here is that both 
compute errors in information processing. However, at this point the similarities 
appear to end. In back propagation models the error is detected at the output, whereas 
in our network (and probably also in real neural systems) errors are computed at the 
level of perception. Furthermore, in back propagation the error signal is conducted 
antidromically through the network. Because real neurons do not work this way, a 
neuronal implementation requires complementary hardware which can convey the 
error signal back to components of the forward path, so that synaptic weights are 
altered according to their contribution to the output (see Schmajuk & DiCarlo, 1992, 
and Zipser & Rumelhart, 1989, for examples of this approach). Although this solution 
may be biologically feasible, it is also biologically expensive. The tuning model 
described in this paper, on the other hand, uses error detection to direct the course of 
processing in the system. A major task of simulation studies will be to determine the 
extent to which this feature, in combination with anti-Hebbian and other biologically 
supported encoding rules, can support rapid and accurate learning comparable to that 
produced by back propagation.  

To date, we have implemented the tuning function in a simple three-channel 
network, excluding the associative function (i.e., active connections between the 
readout registers of Figure 4). Although the properties of this simple system are not 
yet fully determined, it appears from our current understanding that this system will 
be able to generate the phenomena of blocking and overshadowing, provided that 
separate sensory channels are used to represent the component stimuli. One 
interesting implication of the qualitative architecture of Figure 2 is that blocking and 
overshadowing can be expected to occur as long as the tuning system is active during  
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learning. however, once this system has been disengaged owing to a well-formed 
association, salient features added to a predictive stimulus should again acquire signal 
value, to the extent that tuning is reinstated by them. At this time we are not aware of 
behavioral data that directly evaluate this possibility. Blocking may also occur at 
levels of the system which we have not modelled, such as those involved in 
generating overt responses (Lynch & Granger, 1992).  
 
Experiments  
 

One reason for attempting to formulate a structural model of learning is to ex- 
plore experimental questions raised by it. We are using the model to guide the design 
and analysis of human psychophysiological experiments and animal studies. 
 
 
 

Figure 6. Response of N100 and P300 event-related potentials to CS+ (left panel) and US events (right 
panel) during discriminative aversive conditioning in human subjects. Spectral power between 30-45 
Hz is also shown for a one-sec interval following delivery of the US (augmented power was not 
detected in this frequency range following CS+). lie metric for spectral power is the area of isoline plots 
containing baseline-corrected t-statistics exceeding p <.001, multiplied by the value of t. Results are 
taken from Flor et al. (1994) and are averaged over three procedurally isomorphic conditioning groups 
(Cz recording).  
 

 
Results recently gathered by Flor et al. (1994) on aversive classical conditioning 

in human subjects give reason to suggest that the model may offer a first approxima- 
tion of brain dynamics during learning. Flor et al. (1994) carried out discriminative 
conditioning using different human faces as conditioned stimuli (ass) and strong in- 
tracutaneous electric shock as the unconditioned stimulus (US). Three groups of 
subjects were trained which differed with respect to whether an angry, happy, or 
neutral face signalled the US event. In each group a slow negative wave was 
observed to develop in the EEG following CS+ but not CS-, and to extinguish when 
the US was discontinued. The time course of the slow wave effect is consistent with a 
role for such waves in preparing neural networks for alteration of synaptic weights  
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by US events. Because slow negativities appear to reflect depolarization of apical 
dendrites and show variable topography depending on the requirements of a task 
(Birbaumer et al., 1990, 1992), it is also reasonable to suggest a thalamic facilitator as 
their source. However, it appears likely that plasticity will have to be introduced into 
thalamic or basal forebrain structures in the model of Figure 3, because there is 
nothing in the model at present that can account for a differential response of slow 
waves to CS+ and CS- events. Flor et al. (1994) also recorded P300 waves that were 
elicited by CS and US events over the course of conditioning. P300 waves elicited by 
the US were found to diminish over acquisition trials, but P300s elicited by CS 
occurrence did not. These results, which are summarized in Figure 6, are consistent 
with the view that P300 waves are released by corticothalamic feedback consequent 
on surprise. CS events were not predictable from the cues that preceded them in Flor 
et al.'s training arrangement, but US events were perfectly predictable from the CS+.  

Flor et al. (1994) subsequently applied power spectral analyses to their results, 
using a sliding window centered on successive 200 msec epochs within conditioning 
trials. Although the most prominent finding was augmented power between 0-5 Hz 
following CS+ and the US (this effect reflecting slow and P300-like waves), 
increased power was also detected between 30-45 Hz immediately following delivery 
of the US in each conditioning group. In two groups (these receiving either different 
neutral faces as CS+ and CS- stimuli, or an angry face as CS+ and a happy face as 
CS-) the 30-45 Hz effect disappeared by the third block of acquisition trials, whereas 
in the third group (this group receiving a happy face as CS+ and an angry face as CS) 
the effect diminished more slowly over the course of acquisition. Because the 30-45 
Hz response appeared only following early US events, it appears to have been driven 
by US occurrence rather than by CS offset. Figure 6 includes the 30-45 Hz response 
so that its temporal course can be compared with the P300 elicited by the US. At this 
time we cannot say whether the 30-45 Hz response is a coherent oscillatory 
phenomenon, or whether it is composed instead of a complex of potentials brought 
out by strong somatosensory stimulation, some of which may relate motor responses 
elicited by the US rather to plastic changes induced by this event. The time course of 
the 30-45 Hz response to the US is compatible with a role in plasticity, but other 
functions could be served.  

There is reason to inquire into a possible functional role for brain oscillatory re- 
sponses in learning, even though the presence of such responses has not been well 
documented in learning experiments at the present time. Coherent oscillatory activity 
in the gamma band range (20-50 Hz) has been recorded from visual and 
somatosensory cortex of animal preparations during perceptual tasks (Singer et al., 
1990; Murthy & Fetz, 1992) and from human subjects by means of neuromagnetic 
recordings taken during the delivery of brief auditory (Pantev et al., 1991) or 
somatosensory stimuli (Kaukoranta & Reinikainen 1985). It has been suggested that 
oscillatory phenomena of this type may segregate and bind sensory features that 
define objects or events in visual, auditory, or somatosensory fields (Pantev et al., 
1991; Singer et al., 1990). Oscillatory activity that extends beyond the duration of a 
stimulus might also support the organization of limb or eye movements which are 
appropriate for a stimulus, insofar as priming of feature detectors for kinesthetic 
patterns by top-down processing is a mechanism by which the brain-defines and 
executes behavioral responses (Brener, 1986). In principle, oscillatory patterns  
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could serve multiple functional roles in adapting an organism to its circumstances. 
For example, if oscillating assemblies of neurons code sensory, motor, or other brain 
events that occur in the experience of an organism, such events can subsequently 
become assimilated into the prevailing context and into the stream of the organism's 
activities only by virtue of some effect of their oscillatory representations on synaptic 
conductivities. A role in learning is thus implied which is not incompatible with 
concurrent roles in perceptual identification and\or response selection.  

Animal experiments may help to inform us further on the role of oscillatory 
activity and P300-like events in information processing. In particular, our model 
emphasizes the role of the corticothalamic backprojection in associative processes. 
One goal of these studies is therefore to see how neural activity in corticothalamic 
pathways is altered by the occurrence of unpredicted (surprising) events in the 
environment. We are also exploring whether corticothalamic activity produced by 
stimulus novelty is related to P300-like waves and oscillatory rhythms in different 
structures of the rat brain. Corticothamic feedback could be a source of oscillatory 
activity and promote encoding in highly selected cortical networks, if such feedback 
were to switch thalamic relay neurons in the forward path into a bursting mode. Were 
firing of relay cells to be sustained, perhaps by a combination of continued sensory 
input and corticothalamic feedback acting through specific reticular neurons (these 
neurons having inhibitory effects on relay cells), other thalamocortical circuits might 
be brought into the picture, to the extent that these circuits are similarly being driven 
by unpredicted events in a task situation. Repetitive firing has been documented in 
thalamic neurons (Llinas & Geijo-Barrientos, 1989; Steriade et al., 1991) and might 
relate to these processes, although the mechanism and functional role of thalamic 
oscillatory activity can only be speculated about at this time (Llinas, 1992).  
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